Solar Records. By Pliny Earle Chase, LL.D., Professor of Philosophy in IIaverford College.
(Read before the American Philosophical Socicty, April 4, 1879.)

## I. Harmonies of Lockyer's "Basic Lines."

From the third law of motion it follows, as a necessary consequence, that cosmical and molecular bodies act and react upon one another in accordance with laws of perfect elasticity. Hence, by introducing formulas of undulatory motion, results can often be speedily reached which would, otherwise, require the use of long and difficult analytical processes.
In previous communications I have shown :

1. That some of the most striking indications of nodal aggregation in the planetary system, are connected, by the laws which govern the relations between density and altitude in elastic atmospheres, with the nodal indications of the Fraunhofer lines.*
2. That the collisions of subsiding particles, from opposite diametral extremities of a condensing spherical nebula, tend to form shells or rings oí nodal aggregation, at $\frac{2}{3}$ of the radial distance from the centre of the nebula. $\dagger$
3. That centres of linear and of spherical oscillation, exert an important influence, both upon molar and upon molecular armagements. $\ddagger$ Professor Stephen Alexander had previously pointed out some instances of the results of spherical oscillation in the solar system.
4. That the notal resistance of large cosmical bodies tends to form other nodal aggregations, at harmonic intervals, in accordance with the laws of musical rhythm which govern the vibrations of clastic media.§
5. That there are reasons for anticipating, in the fundamental osellations of terrestrial elementary bodies, symmetrical harmonic evidences of the eame laws as govern the harmonic nodes of elastic media and the harmonic grouping of phanetary systems.\|

I have also shown, both from independent considerations and as corollaries from the foregoing liws :
6. That in paraboloidal aggregation, there are three watve systems, with tendencies to nodal collisions und orbital aggregations in which the mujor axes have successive diflerences of $4 x_{0}$.

```
* Ante, x vil, 100, s7.; 1877: 205, sq; 1578.
+ Ib, xv|I. 100; 1477.
# [1, , x, 103: 1900.: x{11, 110 s%%; 18%3.
& x111., 110, 193,257; 1573.
| If., xlf., 8M2 sy.; 187%.
[ [1), xvI, [007; 1877.
```

7. That centripetal energy $\left(f \propto \frac{1}{r^{2}}\right)$ varies as the fourth power of tangential energy in a circular orbit* $\left(v=\int^{\prime} r \propto \sqrt{ } \frac{1}{r}\right)$.

Lockyer has published eightt "basic lines," which furnish illustrations of all these laws, or established harmonies.

The mean vis viva of the æthereal sphere of which Earth is the centre, tends (law 3) to form a node at . 4 of Sun's distance from Earth, or at .6 of the same distance from Sun. Having already seen that the Fraunhofer line A is the exponential correlative of the planet Neptune, we readily find that this node is represented lyy a wave length of 4215.8 ten millionths of a millimetre. For (Laws 1, 5):

$$
\begin{array}{ccccc} 
& \text { Neptune. } & & \text { Earth. } & \text { A. } \\
\text { Log. } & 6442.985 & : & \log . & 214.524 \times .6:: \\
7612 & : 4215.8
\end{array}
$$

If we regard this value as a fundamental ware-length for terrestrial chemical elements, we may also (Laws 6,7 ), regarcl $\left(\frac{1}{4}\right)^{4}$ of $4215.8=16.468$ as a fundamental increment. for such harmonic undulations as may be excited in the elastic wether by inertial resistance.

The "theoretical" column in the following table, is constructed by simple combinations of the fundamental wave length and the fundamental increment.

| Theoretieal. | "I3asic Lines." |
| :---: | :---: |
| $5209.8+3^{2} \times 16.468=5418.0$ | 5410 |
| $4215.8+8^{2} \times 16.468=5269.8$ | 5269 |
| $5170.9+2^{2} \times 16.468=5236.8$ | 5268 |
| $5022.7+3^{2} \times 16.468=5170.9$ | 5235 |
| $4215.8+7^{2} \times 16.468=5022.7$ | $b_{3} b_{4}$ |
| $4^{4} \times 16.468=4215.8$ | 5017 |
|  | 4215 |

Lockyer does not give the wave lengths of $b_{3}$ and $b_{4}$. Gibbs $\ddagger$ gives $517 \%$ as the wave length of the $b$ line. Law 2 is illustrated in the third theoretical line (5236.8), which represents $\frac{2}{3}$ of the interval between 5170.9 and 5269.8 . These are both double lines in Lockyer's system. The doubling may, perhaps, be owing to the modification of the other activities by Law 2. Lines 2 and 5 ( 5269.8 and 5022.7 ) are directly connected with the funda. mental line. All the incremental multipliers are integral squares. The difference between line 2 and line 5 is $15 \times 16.468$. The greatest square in 15 is $3^{2}$, and the greatest square in $15-3^{2}$ is $2^{2}$. These squares are the in-

[^0]cremental coefficients for lines 4 and 3 . The difference between lines 1 and 2 is the same as that between lines 4 and 5 .

The greatest difference between the theoretical and measured values $(5022.7-5017=5.7)$ is only $\frac{1}{40000000}$ of an inch. The closeness of the accorlance may be more readily seen by dividing each of the theoretical values by 1.00028 .

| Reduced Theoretical. | Measured. |
| :---: | :---: |
| 5416 | 5416 |
| 5268 | 5269 |
| 5268 | 5268 |
| 5235 | 5235 |
| 5021 | 5017 |
| 4215 | 4215 |

In some respects this symmetry scems even more remarkable than those which I found, nore than eightcen months ago, in many of the chemical elements. They were, however, directly harmonic, being based on centrifugal relations to the centres of wave systems (Law 5). These are reciprocally harmonic, being based on centripetal relations to the surface of Sun's chromosphere.
Multiples of the fundimental increment often appear in the differences between the wave lengths of clementary spectra. The following instances, in elements for which I have already shown harmonic relations,* will serve as examples. The left hand columns contain exact multiple difterences ; the right-hand columns, measured wave-lengths :

Mercury.

| 546.09 | 546.13 | 578.67 | 578.67 |
| :---: | :---: | :---: | :---: |
| 542.80 | 542.80 | 529.27 | 529.30 |
| Lead. |  | 522.21 | 520.24 |
|  |  | 465.75 | 46.5.64 |
| 537.78 | 537.71 | Arsenic. |  |
| 439.07 | 439.07 | $61 \% .54$ | $61 \% .54$ |
| Lithium. |  | 533.55 | 533.55 |
| 479.69 | 479.48 | 611.67 | 611.67 |
| 459.93 | 459.93 | 578.73 | 578.73 |
|  |  | Zinc. |  |
| Ruthenimm and | Iridium. | 636.93 | 836.09 |
| 545.34 | 5.55 .44 | 610.64 | 610.64 |
| 530.52 | 530.52 | 472.31 | 470.20) |

In the eopper lines, the first thenretical difference is $30 \times 1$.filfis; the second is $\}$ as much; the third is the sum of the ofher two. In ursenic, the seeond line is $2^{2} \times 3^{3} \times 1.6469$.

[^1]
## II. Spectial Estimates of S'un's Distance.

I have further shown :
8. That the harmonic undulations of our atmosphere are such as to furnish a simple method of estimating Sun's distance, by means of barometric fluctuations.*
9. That approximate estimates of Sun's distance, may also be made from the harmonic disturbances of magnetism, $\dagger$ (ehemical energy, light, sound, $g t, g t^{2}$, simultaneous attraction of Sun, Earth and other planets upon elastic fluids), $\ddagger$ lunar distance and orbital time. §
10. That there are evidences of paraboloidal nucleation, connecting the Sun, each of the planets, the asteroidal belt, and the star Alpha Centauri.\|
11. That planetary rotation is merely retarded orbital revolution, through the collision of particles near paraboloidal or ellipsoidal foci. ब
12. That $g t$, when $t$ is the time of cosmical or molecular semi-rotation, represents the limiting velocity between complete dissociation and incipient aggregation.**
13. That $g t$, for the principal planets in the supra asteroidal and in the infra-asteroidal belt (Jupiter and Earth), is determinedtt by Sun's orbital influence $(\sqrt{ } / \overline{g r})$; while $g t$, for the Sun, is the velocity of light.
14. That Jupiter is at the centre of the Neptnno-Uranian nebula ; Earth is at the centre of the belt of greatest density ; Sun is at the nucleal centre of the entire system. $\ddagger \ddagger$
15. That the frequency of oscillations in the violet rays, and the superficial gravitating energy of the Sun, are indicative of reciprocal action and reaction. $\& 8$
16. That successful predictions may be made from simple considerations of the principles which are involved in harmonic undulation. ||

All of these laws were found by means of the hypothesis that the undulations of an rethereal medium, when interecpted by inert bodies, tend to produce harmonic undulations (Law 4).

The discovery of the foregoing "basic" harmony, therefore, led me to look with confident expectation for such evidences of undulatory collision, between solar and terrestrial wawes, as would furnish satisfactory grounds for new estimates of the Sun's mass and distance.

Beginning with the most far-reaching of all the indications (Law 10), and taking Earth's half radius as the unit and focal abscissa of a primitive

```
*Ante, 1x, 257; 1563.
\dagger1b., ix, 356, 367, 427, 487; 1801.
\ddagger1b., xi, 103; 1569: x11, 302; 1872: xiil, 142; 1873.
z xili, 398-400; 1872.
| Ib., x 1i, 519; 1872.
IIb. xij, 406; 1872: xiv, 112; 1874.
** Ib, xiv, 111; 1574: xvi, 298, 496; 1876-7.
\daggerIb. xil, 406;1572.
#+Ib. xvi, 497; 1577.
&% Ib, xil1, 149; 1873.
|| ID. ix, 288; 1563: xlil, 238; 18.3: xvili, 34; 1573.
```

paraboloid, the focal ordinate would be equal to radius. I then found (Laws 6, 7,11, 12), that by comparing the vis viod of satellite revolution at Earth's
 abscissa ( $\propto v_{1}{ }^{2}=\frac{1}{4}$ of the square of the velocity of equatorial superficial rotation), we may oldain the equation :

$$
\begin{equation*}
\left(\frac{v_{0}}{v_{1}}\right)^{2}=\frac{r}{y}, . \tag{1}
\end{equation*}
$$

in which $y$ represents the distance traversed by a ray of light (compare Laws 13,15 ), while a body, at the equator, would fall through the "fundamental increment" of the foregoing tabular comparison ( $\frac{1}{2} \frac{1}{5}$ of 4215.8 ten millionths of at millimetre). For,

$$
\begin{aligned}
& \varepsilon_{0}=\sqrt{g r}=\sqrt{385} \times \frac{3963}{5280}=4.90 \tau \mathrm{~m} \\
& v_{1}=\pi \times 3903 \div 86165=.1445 \mathrm{~m} \\
& y=r\binom{v_{1}}{v_{0}}^{2}=3.430 \mathrm{~m} \\
& t=\sqrt{.000000001646} \overline{.0} \div 4.8894
\end{aligned}=.000018353 \mathrm{sec} .
$$

Light traverses Earth's mean radius-vector in $49 \% .825$ sec. Therefore, according to this estimate, Sun's mean distance is
$\frac{497.825 y}{t}=93,203,000$ miles
A second approximation may be made by remembering that the basic lines are the reciprocals of harmonic lines, and comparing the wethereal volumes, or the reciprocals of the ratio of variability in tidal influence, $\binom{1}{d}^{3}$, at the points where the disturbing forees are grentest (the surfaces of the disturbing bodies). By the laws of elasticity, the athereal undulations that are set up at any point, are propagated with uniform velocity. If we take the theoretical fundamental wave length as our fundamental unit, and if we call the mean orbital distance which barth traverses in the time ( $t=.000018353 \mathrm{sec}$.; of falling through the fundamental increment, the "orbital unit," we find that
$\underset{\text { Fundamental unit }}{\text { Orbital }}=\binom{\text { Sun's radius }}{\text { Earth's radius }}^{3}$.
For, representing Earth's mean radius-vector by $x$;
Orlital unit $=2 \pi x \times .000018: 353$ sec. $\div 1$ year.
Fundamental unit $=\frac{4215.8 \times \frac{.0000000039371}{63360}}{} \mathrm{~m}$.
Sun's radius $=x+214.524$.
Earth's radius $=3963 \mathrm{~m}$.
Substituting these values in equation (3), we get

$\therefore x=12,579,000$ milles.

It will be readily seen that equations (2) and (4) are entirely independent of each other. The true unknown quantity, or common unit of comparison, in each case, is the velocity of light. The comparison is drawn, in the first instance, hetween Earth's centripetal and centrifugal forces ; in the second, between Sun's orbit-controlling influence upon Earth, and Earth's reaction upon Sun. That reaction must be exerted, either throngh an clastic medium, or by means of quasi-elastic forces. The elimination of the comparative unit, slows that the hypothesis of a luminiferous ether, or "xthereal spirit" as Newton termed it, accomnts for inter-stellar, planetary, chemical, electrical, cosmical and molecular action. I do not, however, regard this fact as conclusive of the existence of such a medium, although it seems to lend the hypothesis a higher degree of probability than any previous inveatigations, and it requires, at least, quasi-clastic action.

The difference between the two results is less than one-lalf of one per cent. It would have been easy to assume values for the constants, which are within the limits of probable errors of observation, and which would have made the accordance exact. The value of Sun's radius $(x \div 214.524)$ is deduced from Dr. F'uhg's estimate of Sun's apparent diameter. Three other estimates, which do not make so large an allowance for irradiation, are also included in the following table:

|  | Apparent Dlam. | $x \div \operatorname{Sun}$ 's $r$. | $x$. |
| :---: | :---: | :---: | :---: |
| Dr. Fuls.* | 822 $2.1 / 93$ | 214.524 | 92,5\%9,000 |
| British Nitut. A | . 32 3. 64 | 214.451 | 93, 331,700 |
| American " | . 32 4. 00 | 214.412 | 92,506,500 |
| Lockyer's Astron | .32 4. 2วコ | 214.388 | 9?,491,000 |

Among the numerous previous mechanical estimates that I have given, the one which accords most nearly with the two present determinations, was the one which was based upon thermo-dynamical considerations derived from the "heating energy of flames," $\dagger$ and which gave

$$
\begin{equation*}
x=92,639,500 \text { miles } . \tag{4.}
\end{equation*}
$$

The intimate connection between Sun, Jupiter and Earth, which is incilcated by Laws $\ddagger 13$ and 14 , should lead to many other relations, no less interesting than the foregoing.

If we take $\frac{1}{2} \frac{1}{5}$ of the cosmical distance which corresponds to the funda. mental wave-length, we find

$$
\begin{equation*}
{ }^{2 \frac{1}{3} 6} \text { of } .6 \text { of } 214.524=.5028=1.0056 \times .5 \tag{5}
\end{equation*}
$$

But .5 is the focal abscissa of the primitive paraboloid, of which Sun's radius is the focal ordinate.

## III. Relations of Mass.

According to Professor Peirce's meteoric hypothesis, it may be reasouably presumed that each planet receives meteoric increments, or suffers

[^2]changes from meteoric influenees, in proportion to its mass, so as to maintain a permanency of relative mass anong the principal members of our system.

I have already pointed out various harmonic mass relations (Law 3), including the following equation involving figurate powers of the supraasteroidal masses, as well as of their distances.*

$$
\begin{equation*}
\text { Saturn }^{10}=\text { Neptune }^{1} \times \text { Uranus }^{3} \times \text { Jupiter }{ }^{6} \tag{6}
\end{equation*}
$$

I have also called attention to the fact that these four planets, together with Earth and Sun, represent important centres of nebular or quasi-nebular influence, viz:

Néptune, centre of primitive annular condensation.
Earth, centre of belt of greatest density.
Sun, centre of nucleal condensation.
Uranus, centre of primitive "subsidence" collision (Law 2).
Jupiter, centre of Neptuno-Uranian nebula.
Saturn, nebular centre of mean planetary inertia. Saturn is also the centre of paraboloidal subsidence when Neptune was focal and Sun was at the vertex.

The report of Professor Pierce's lecture led me to look for some equation to connect the masses at the two remaining centres (Earth and Sun) with those of the two chief planets, and I soon found that

$$
\begin{equation*}
\text { Jupiter }{ }^{3}=\text { Sun } \times \text { Earth } \times \text { Saturn } . \tag{7}
\end{equation*}
$$

This equation gives

$$
\left.\begin{array}{rl}
\text { Sun's mass........ } & =328,600  \tag{2}\\
\text { " parallax..... } & =8 . / 1832 \\
" \text { distance.... } & =92,549,000 \text { miles. }
\end{array}\right\}
$$

Combining (6) and (7), we find
Saturn $^{9}=$ Jupiter ${ }^{9} \times$ Uranus $^{3} \times$ Sun $\times$ Earth $\times$ Neptune
The masses of Neptune and Uranus seem to be so related as to give them equal ratios between their present orbital momentum and the orbital momentum at their respective abscissas in the solnr-stellar paraboloid ( $\frac{8}{7}$ Nep)tune and $\frac{7}{f}$ Uranus).

$$
\left.\begin{array}{r}
7 \times \text { Neptune }=8 \times \text { Uranus }  \tag{9}\\
\therefore 1^{\prime \frac{7}{8}} \times \text { Neptune }=\sqrt{ } \frac{5}{7} \times \text { Urauns }
\end{array}\right\} .
$$

Equation (8) may be stated under the form

$$
\begin{equation*}
\left(\frac{\text { Sat. }}{\text { Sun. }} \times \frac{\text { Sat. }}{\text { Siar. }} \times \frac{\text { Sat. }}{\text { Nep. }}\right)\left(\frac{\text { Sat. }}{\text { Jup. }} \times \frac{\text { Sat. }}{\text { Ura. }}\right)^{3}=1 . \tag{10}
\end{equation*}
$$

Ifere the equation of planetary stability groups the centres in two sets, as in equation (7), the flrst introducing the first powers, the other the cubes, of the relntive masses. The sume exponentinl grouphing also weenrs in (3), but with linear factors instoad of mass factors. If we eonsider that, in a rotuthig nobula, the time of rotution varies inversely as the scquare of the

[^3]radius, and also inversely as the disturbing mass, the first group leads to the equation
$\frac{\text { Earth } \times 1 \text { year } \times(\text { Neptune's } \mathrm{r} . \text { vec. })^{2}}{\text { Sun } \times 1 \text { day } \times(\text { (Earth's r. vec. })^{2}}=1$.

This equation gives

$$
\left.\begin{array}{rl}
\text { Sun's mass. } . \ldots . . & =330,375  \tag{12}\\
\text { " parallax. } . \ldots & =8 . " 816 \\
\text { " distance. } . . . & =92,717,000 \text { miles. }
\end{array}\right\}
$$

In considering this and other relations of mass to æethereal disturbance, it is well to remember that the simple disturbance varies as the mass; the vis vior, or radius of consequent oscillation, as the square of the mass; and the consequent orbital period, as the cube of the mass.

By introducing the vector-radii also into the cubical factor of (10) and designating secular perikelion, mean perihelion, mean aphelion, secular aphelion, respectively, by subscript $1,2,3,4,5$, we find

$$
\left.\begin{array}{l}
\frac{\text { Sat }_{3} \times \text { Sat. }_{4}}{\text { Jup. }_{2} \times \text { Ura.3 }_{3}}=1  \tag{13}\\
\text { Sat. }_{3} \times \text { Sat. }_{4}=1 \\
\text { Jup.3 } \times \text { Ura.2 }^{2}
\end{array}\right\}
$$

The greatest deviation from exactness, in the first of these equations, is less than $\frac{1}{8}$ of one per cent.; in the second, less than $\frac{1}{16}$ of one per cent. The mean deviation, in the square root of the product of the two equations, is only $\frac{1}{36}$ of one per cent.

We see by (5) and (13), as well as by ordinary astronomical investigations, that questions of relative mass are intimately connected with those of orbital eccentricity. One of the most interesting evidences of such connection, in this special line of investigation, is to be found in the position of the mean fulcrum of the system, or centre of gravity of Sun and Jupiter, together with the significance which it lends to equations (5), (6), (8), (13), as well as to the fundamental increment which is the ground of equation (3). The orbital vis viva has lengthened the radius-vector of simple equilibrium by $\frac{1}{15}$ of its value. For $5.2028 \times 214.524=1116.125$; $\frac{1}{6} \frac{6}{7}$ of $1116.125=1050.471$. The limit of synchronous radial and circular oscillations is at $2 r$. Deducting 2 from 1050.471 we find

$$
\frac{\text { Sun's mass }}{\text { Jupiter's mass }}=1048.471
$$

Equations 7, 8 and 9 give the following theoretical values, for Uranus and Neptune, which I compare with Newcomb's :

| Sun - | Theoreticai. | Newcomb. |
| :---: | :---: | :---: |
| Uranus. | ... 22116 | $22600 \pm 100$ |
| Neptune | 19352 | 19380 to 19700 |

Newcomb gives two estimates for Neptune, one ( $19380 \pm 70$ ) from satellite, the other (19700) from perturbations of Uranus. The latter agrees
precisely with the theoretical ratio (9) between the two planets, while the former is presumably more accurate.

The uncertainty in regard to all the planetary masses, except that of Jupiter, is still so great, that it is impossible to tell how elosely they are represented by the equations for the combined central activities $(6,7,8)$. The latest investigations of Leverrier and Newcomb, however, show a closeness of approximation which is remarkable, in view of the wide discrepancy in some of the values. Leverrier's mass-denominators, based on the old parallax (8. $1 / 57$ ), are: Neptune, 14400 ; Uranus, 24000 ; Jupiter, 1050; Saturn, 3512 ; Earth, 354936 . The accorlance with the combined equation (8) is within $\frac{5}{8}$ of one per cent. if we deduce Earth from the other masses ; within $\frac{1}{1 f}$ of one per cent. if we deduce Saturn.

If we look to the partial equations, ( 6,7 ), we find that Saturn's mass, as deduced from Neptune, Uranus and Jupiter, (6), is about $\frac{2}{3}$ of one per cent. greater than Leverrier's assumption, and about the same amount less than Bessel's, which was adopted by Newcomb. The mean of the two results showes an exact accordance, as follows:

|  | Dednced. | Assumed. |
| :---: | :---: | :---: |
| Leverrior. | . . 3488.3 | 3.712 .0 |
| Newcomb. | . . 3525.0 | 3501.6 |
| Mean. . | . 3506.6 | 3506.8 |

The results of the second purtial equatior, $\left(7_{2}\right)$, may confidently await the verdict of the observations upon the last trancit of Venus. No other estimate can now claim a greater degree of probability. It may be, as Leverrier suggests, that a small portion of the mass may belong to a group of minute asteroids, near Earth's orbit, but there is no present likelihood that any material inaccuracy will ever be found in the equation which connects the two prineipal intra-asteroidal centres with the two principal extraasteroidal centres.
E. Wiedemamn's experiments mon the illumination of gases by clectricity, * have convinced him that the electric discharge may excite a considerable increase of the vis vier of oscillation in athereal envelopes, without increasing the vis vicu of the enclosed molecules. Peiree's meteoric hypothesis opens an immense field for new plysical speculation and investigation. If the gether is material, where shall we draw the boundary between sethereal and meteoric inlluences? If cosmical masses have heen formed by parabolodal megregation, may not radintion also be paroboloidal? The solar forces of association und dissociation seem to be nlmost exactly Inlanced, und the law of equal netion and reaction may, perhaps, free the sefence of thermodymamics from the opprobrime of its apparent tendencies to universal aggregation, stagnation und death.

[^4]
[^0]:    * Ib., x111, 245; 1873.
    $\dagger$ Proc. Roy. Soc. Jan. 1879.
    $\ddagger$ Am. Jour. Sci. [2] x1ili, 4.
    PROC. AMEIR. PHILOS. SOC. XVIII. 103. 2C. PIRINTED APRIL 25, $18 \% 9$.

[^1]:    - Ante $\times$ vill, 2v7; 1578.

[^2]:    * Deduced from 652\% measuremerts; Astron. Nach. 2040, cited in Am. Jour. Sci., x, 159, Aug. 1875.
    $\dagger$ Ante, xii, 391; Am. Jour. Sci., 111, 292; 1S72.
    $\ddagger$ I call all these harmonles "laws," because they exhibit pre-establlshed purposes, though some of them are more special than others.

[^3]:    - Aute, XIV, ming

[^4]:    -Wied. Anth, vi, p. 33 t .

